2,227 research outputs found

    Phase Transition of Finite Size Quark Droplets with Isospin Chemical Potential in the Nanbu--Jona-Lasinio Model

    Full text link
    Making use of the NJL model and the multiple reflection expansion pproximation, we study the phase transition of the finite size droplet with u and d quarks. We find that the dynamical masses of u, d quarks are different, and the chiral symmetry can be restored at different critical radii for u, d quark. It rovides a clue to understand the effective nucleon mass splitting in nuclear matter. Meanwhile, it shows that the maximal isospin chemical potential at zero temperature is much smaller than the mass of pion in free space.Comment: 12 pages, 3 figures. To appear in Physical Review

    The entropy puzzle and the quark combination model

    Full text link
    We use two available methods, the Duhem-Gibbs relation and the entropy formula in terms of particle phase space distributions, to calculate the entropy in a quark combination model. The entropy of the system extracted from the Duhem-Gibbs relation is found to increase in hadronization if the average temperature of the hadronic phase is lower than that of the quark phase. The increase of the entropy can also be confirmed from the entropy formula if the volume of the hadronic phase is larger than 2.5-3.0 times that of the quark phase. So whether the entropy increases or decreases during combination depends on the temperature before and after combination and on how much expansion the system undergoes during combination. The current study provides an example to shed light on the entropy issue in the quark combination model.Comment: RevTex 4, 4 pages, 2 tables, 4 figures, discussions and references added, to appear in PR

    Chemical freeze-out parameters via functional renormalization group approach

    Full text link
    We study the freeze-out parameters in a QCD-assisted effective theory that accurately captures the quantum and in-medium effects of QCD at low energies. Functional renormalization group approach is implemented in our work to incorporate the non-perturbative quantum, thermal and density fluctuations. By analyzing the calculated baryon number susceptibility ratios χ2B/χ1B\chi_{2}^{B}/\chi_{1}^{B} and χ3B/χ2B\chi_{3}^{B}/\chi_{2}^{B}, we determine the chemical freeze-out temperatures and baryon chemical potentials in cases of hard thermal or dense loop improved μ\mu-dependent glue potential and μ\mu-independent glue potential. We calculate the χ4B/χ2B (κσ2){\chi_{4}^{B}}/{\chi_{2}^{B}}\, (\kappa \sigma^{2}) and χ6B/χ2B{\chi_{6}^{B}}/{\chi_{2}^{B}} along the freeze-out line for both cases. It's found that κσ2\kappa \sigma^{2} exhibits a nonmonotonic behavior in low collision energy region and approach to one for lower collision energy. χ6B/χ2B{\chi_{6}^{B}}/{\chi_{2}^{B}} shows a similar complicated behavior in our calculation.Comment: 14 pages, 11 figures, 7 table

    Investigation of ultra-thin Al₂O₃ film as Cu diffusion barrier on low-k (k=2.5) dielectrics

    Get PDF
    Ultrathin Al(2)O(3) films were deposited by PEALD as Cu diffusion barrier on low-k (k=2.5) material. The thermal stability and electrical properties of the Cu/low k system with Al(2)O(3) layers with different thickness were studied after annealing. The AES, TEM and EDX results revealed that the ultrathin Al(2)O(3) films are thermally stable and have excellent Cu diffusion barrier performance. The electrical measurements of dielectric breakdown and TDDB tests further confirmed that the ultrathin Al(2)O(3) film is a potential Cu diffusion barrier in the Cu/low-k interconnects system

    Simple Yet Surprisingly Effective Training Strategies for LSTMs in Sensor-Based Human Activity Recognition

    Full text link
    Human Activity Recognition (HAR) is one of the core research areas in mobile and wearable computing. With the application of deep learning (DL) techniques such as CNN, recognizing periodic or static activities (e.g, walking, lying, cycling, etc.) has become a well studied problem. What remains a major challenge though is the sporadic activity recognition (SAR) problem, where activities of interest tend to be non periodic, and occur less frequently when compared with the often large amount of irrelevant background activities. Recent works suggested that sequential DL models (such as LSTMs) have great potential for modeling nonperiodic behaviours, and in this paper we studied some LSTM training strategies for SAR. Specifically, we proposed two simple yet effective LSTM variants, namely delay model and inverse model, for two SAR scenarios (with and without time critical requirement). For time critical SAR, the delay model can effectively exploit predefined delay intervals (within tolerance) in form of contextual information for improved performance. For regular SAR task, the second proposed, inverse model can learn patterns from the time series in an inverse manner, which can be complementary to the forward model (i.e.,LSTM), and combining both can boost the performance. These two LSTM variants are very practical, and they can be deemed as training strategies without alteration of the LSTM fundamentals. We also studied some additional LSTM training strategies, which can further improve the accuracy. We evaluated our models on two SAR and one non-SAR datasets, and the promising results demonstrated the effectiveness of our approaches in HAR applications.Comment: 11 page

    Position Analysis of a Hybrid Serial-Parallel Manipulator in Immersion Lithography

    Get PDF
    This paper proposes a novel hybrid serial-parallel mechanism with 6 degrees of freedom. The new mechanism combines two different parallel modules in a serial form. 3-P̲(PH) parallel module is architecture of 3 degrees of freedom based on higher joints and specializes in describing two planes’ relative pose. 3-P̲SP parallel module is typical architecture which has been widely investigated in recent researches. In this paper, the direct-inverse position problems of the 3-P̲SP parallel module in the couple mixed-type mode are analyzed in detail, and the solutions are obtained in an analytical form. Furthermore, the solutions for the direct and inverse position problems of the novel hybrid serial-parallel mechanism are also derived and obtained in the analytical form. The proposed hybrid serial-parallel mechanism is applied to regulate the immersion hood’s pose in an immersion lithography system. Through measuring and regulating the pose of the immersion hood with respect to the wafer surface simultaneously, the immersion hood can track the wafer surface’s pose in real-time and the gap status is stabilized. This is another exploration to hybrid serial-parallel mechanism’s application

    Discovery of a spatially extended GeV source in the vicinity of the TeV halo candidate 2HWC J1912+099: a TeV halo or supernova remnant ?

    Full text link
    Observations by HAWC and Milagro have detected spatially extended TeV sources surrounding middle-aged (t∼100−400 kyrt\sim100-400 \,{\rm kyr}) pulsars like Geminga and PSR B0656+14, which have been named "TeV Halos", representing very extended TeV pulsar wind nebulae (PWNe) powered by relatively old pulsars. A few more HAWC-detected sources have been suggested to be TeV halo candidates. In this paper, we search for possible GeV counterparts of three TeV halo candidates with Fermi Large Area Telescopes. We detect a new spatially extended GeV source in the vicinity of the TeV halo candidate 2HWC J1912+099, which is also detected by HESS (HESS J1912+101). We find that the size of the GeV source is significantly larger than that of the TeV emission measured by HESS, and a spatial template characteristic of a PWN can fit the GeV data. We suggest that the GeV source is an extended PWN powered by the central middle-aged pulsar PSR J1913+1011. This discovery favors the TeV halo scenario for the TeV source 2HWC J1912+099 (HESS J1912+101), although the possible shell-like morphology measured by HESS challenges this interpretation. Alternatively, the TeV emission could be dominated by a supernova remnant (SNR) via the hadronic process. Future multi-wavelength observations of the source and more precise measurements of the spatial profile of the TeV emission will be useful to distinguish between the two scenarios.Comment: Accepted by ApJ, 7 pages, 6 figure

    Nonconvulsive status epilepticus associated with periodic lateralized epileptiform discharges in a patient with syphilis

    Get PDF
    AbstractNonconvulsive status epilepticus (NCSE) has been increasingly recognized as a cause of impaired level of consciousness in the ICU and emergency rooms. The confirmation of NCSE is largely based on the EEG, given the nonspecific and pleomorphic clinical manifestations. Debate remains over electroencephalograms (EEG) criteria for NCSE. Periodic lateralized epileptiform discharges (PLEDs), have sparked controversy with regard to being part of the ictal vs. interictal spectrum. We report a case of a patient with syphilis who had cognitive decline and damaged consciousness with PLEDs and T2 hyperintensity at temporal and occipital lobe in MRI. After antiepileptic treatment only, his consciousness improved markedly together with the EEG in few days, while the change of MRI was still serious. In this case PLEDs is the sign of NCSE and change of MRI is limbic encephalitis (LE). This report discusses the association of PLEDs and NCSE, and supports the concept of PLEDs as an ictal pattern in some condition
    • …
    corecore